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A MUSCL METHOD SATISFYING ALL THE NUMERICAL

ENTROPY INEQUALITIES

F. BOUCHUT, CH. BOURDARIAS, AND B. PERTHAME

Abstract. We consider here second-order finite volume methods for one-
dimensional scalar conservation laws. We give a method to determine a slope
reconstruction satisfying all the exact numerical entropy inequalities. It avoids
inhomogeneous slope limitations and, at least, gives a convergence rate of
∆x1/2. It is obtained by a theory of second-order entropic projections involv-
ing values at the nodes of the grid and a variant of error estimates, which also
gives new results for the first-order Engquist-Osher scheme.

1. Introduction

Second-order upwind schemes for scalar conservation laws, based on ideas of
B.Van Leer [28], rely on two steps. First, the application of an upwind solver to a
piecewise linear function, then a reconstruction step in order to build this piecewise
linear function. The “slope reconstruction” is crucial, and is performed using a
minmod limitation, so as to satisfy the total variation diminishing (TVD) property
(see A. Harten [11], P.K. Sweby [25]). This procedure is usually called MUSCL
method. Unfortunately, this property cannot hold in several dimensions on a non-
Cartesian grid, and appears only in a weaker form (S. Champier, T. Gallouët and
R. Herbin [5], F. Coquel and P. LeFloch [8], A. Szepessy [26], J.P. Vila [30]).

An entropy inequality is also necessary in order to compute the physical shocks,
and is not easily checked when dealing with second-order schemes. It was obtained
in various situations by S. Osher [19, 20], S. Osher and S.R. Chakravarthy [21], S.
Osher and E.Tadmor [22], J.P. Vila [29]. The numerical entropy inequality is usually
obtained for the entropy S(u) = u2/2, with a first-order approximation, under a
supplementary nonhomogeneous limitation on the slopes depending on the grid
size. Many works are devoted to avoiding this inhomogeneous limitation. H. Yang
[31] proposes an approach in that direction. Also, using Hamilton-Jacobi equations,
P.L. Lions and P. Souganidis [17] could avoid this kind of supplementary limitations
in the case of a convex flux for the implicit scheme. For finite element methods,
these problems are also relevant. J. Jaffre, C. Johnson and A. Szepessy [12] have
developed a high-order multidimensional discontinuous Galerkin method, which
satisfies all the entropy conditions, but again with a nonhomogeneous artificial
viscosity term. In a simpler context, G. Jiang and C.-W. Shu [13] have presented
a simple approach to get this inequality without unnatural limitation or viscosity.
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In this paper, we present a second-order MUSCL-type scheme which satisfies
the entropy conditions for general one-dimensional scalar conservation laws. It
does not use any grid size dependent limiters. The key of the construction is to
evolve not only the cell averages but also the solution values at half nodes. Hence
the result does not contradict the (almost) impossibility of such a second-order
scheme within the class of schemes evolving only cell averages proved by S. Osher
and E. Tadmor [22]. The abstract form of our scheme is very simple. Starting from
a piecewise linear function, one first evolves it exactly or approximately (as done in
practice). One then projects the solution at the next time level back to a piecewise
linear function. Our major contribution is to give such an abstract projection
which diminishes all entropies (Lemma 3.2). In order to make the scheme effective,
some technical modifications are needed. They lead to easy-to-code schemes in
several situations which we present first. Our most general approach is presented
in Theorem 3.6.

We consider a one-dimensional scalar conservation law{
∂tv + ∂xA(v) = 0, t ≥ 0, x ∈ R,
v(0, x) = v0(x).

(1.1)

Second-order finite volume approximations of v(x) are developed as follows:

∆xi(u
n+1
i − uni ) + ∆t(Ani+1/2 −Ani−1/2) = 0.(1.2)

We will construct numerical approximations Ani+1/2 of the exact flux

A(tn, xi+1/2) =
1

∆t

∫ tn+1

tn

A(v(s, xi+1/2))ds(1.3)

such that the scheme satisfies exactly all the numerical entropy inequalities

∆xi(S
n+1
i − Sni ) + ∆t(ηni+1/2 − ηni−1/2) ≤ 0,(1.4)

hence recovering in the limit the exact entropy solution, i.e.,

∂tS(v) + ∂xη(v) ≤ 0,(1.5)

for all convex functions S, with η′ = S′A′. We are concerned with second-order
schemes, which means that, for smooth solutions, the numerical fluxes are second-
order approximations of the exact fluxes (1.3).

As usual for finite volume methods, in (1.2), uni is an approximation of the
average of the solution v at time tn = n∆t on the cell Ci = (xi−1/2, xi+1/2) of
length ∆xi = xi+1/2 − xi−1/2 and center xi = (xi+1/2 + xi−1/2)/2. These cells are
supposed to cover R, but their sizes are not supposed to be uniform nor to vary
smoothly from i to i+ 1. We set

h = sup
i∈Z

∆xi.(1.6)

In MUSCL-type methods, one constructs a piecewise linear approximation of
v(tn, x),

un(x) = uni + sni (x− xi), x ∈ Ci;(1.7)

we will denote by V 1 the vector space of piecewise linear functions. These functions
have a possible jump at the point xi+1/2:

Σni+1/2 = un(x+
i+1/2)− un(x−i+1/2).
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We will often need a subset of V 1 defined by the no sawtooth condition

Σni+1/2s
n
i ≥ 0 or Σni+1/2s

n
i+1 ≥ 0.(1.8)

We prove that it is possible to determine the numerical fluxes Ani+1/2 and the slopes

sni so that the entropy inequalities (1.4) hold for all convex S with

Sni =
1

∆xi

∫ xi+1/2

xi−1/2

S(uni + sni (x− xi))dx.(1.9)

Notice that all the authors quoted above use the discrete entropy S(uni ), whereas
our results only hold for (1.9), which seems fairly new. Another difference is that
we use the “characteristic” variant of finite volume methods, where not only the
average uni of the solution is computed at each time step, but also point values
uni±1/2 (see for gas dynamics P. Colella [7], R. Sanders and A. Weiser [24]). This

leads to a more precise reconstruction when using a rough grid.
More precisely, to obtain the values un+1

i±1/2, we use the kinetic interpretation

introduced by Y. Brenier [3, 2], Y. Giga and T. Miyakawa [10], which is closely
related to the kinetic formulation of (1.1) (see P.L. Lions, B. Perthame and E.
Tadmor [16], B. Perthame and E. Tadmor [23]). This means that our method
is nothing but a second-order version of the Engquist-Osher scheme [9]. But our
reconstruction of the slopes sni does not involve any nonhomogeneous limitation,
and this is also new.

Another motivation to obtain all entropy inequalities is that apart from the
duality method of E. Tadmor [27] it is the main tool, via S.N. Kružkov [14] entropies,
to obtain error estimates by the method of N.N. Kuznetsov [15]. As an application,
we recover the first-order convergence rate of h1/2. For second-order schemes, such
a rate is only known for the max-mod scheme of Y. Brenier and S. Osher [4]; this
recent result is due to H. Nessyahu, E. Tadmor and T. Tassa [18]. The results of
this paper were announced in [1].

The details of the construction of the schemes are given in §2; with our precise
results, we first treat, for simplicity, the particular case of a linear equation or of
Burgers’ equation. Extensions are possible, but they require more technicalities,
and we give the general result as well as a general slope reconstruction theory in
§3. The other sections are devoted to proofs. In §4, we show that the explicit
schemes of §2 are indeed particular cases, or easy variants, of the general result.
In §5, we introduce some general tools, which can be useful elsewhere, to prove
the convergence rate. These results are used in the Appendix in order to give
new convergence rates for Engquist-Osher type schemes: we do not impose any
condition on the time step.

2. Notations and second-order entropic schemes

This section is devoted to particular cases of our main result (Theorem 3.6),
which are completely explicit. For linear or Burgers’ equations, we give the ex-
pression of the numerical fluxes Ani+1/2 and of the entropy flux ηni+1/2 and state

precisely the properties of the resulting method. The derivation of the scheme, and
the proofs of the theorems, are given in the next sections. The linear case is very
simple, and we give our results in that case after we have introduced some nota-
tions. Next, we treat the Burgers equation without sonic point in §2.3. Finally,
the case of Burgers’ equation with general initial data is treated in §2.4. We do
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1442 F. BOUCHUT, CH. BOURDARIAS, AND B. PERTHAME

not claim that these results are of practical interest. They only indicate that it
is possible to go further in the theory of second-order schemes, thus recovering at
least all the entropy conditions and known convergence rates.

2.1. Notations. We begin with some notations and assumptions that will be used
throughout the paper. For general fluxes A(v) in (1.1) and initial approximation
u◦h ∈ V 1 of v◦ (but we will denote for simplicity u◦ = u◦h), we define

a(·) = A′(·),(2.1)

a∞ = sup
min u◦≤ξ≤max u◦

|a(ξ)|.(2.2)

Also, we will often need the following conditions, which bound the time step in
(1.2): the Courant-Friedrichs-Levy condition (CFL in short)

a∞∆t < min
i∈Z

∆xi,(2.3)

and the piecewise nonovertaking condition

∀i, ∀ξ ∈ [min u◦,max u◦], ∆t sni a
′(ξ) > −1.(2.4)

Throughout this paper, TV (u) denotes the total variation of u,

TV (u) =

∫
R
|∂xu(x)| dx.

Finally, we recall the definitions of the classical minmod limiter and its extension:

minmod(a, b) =

{
0 if ab ≤ 0,

signa min(|a|, |b|) if ab > 0,

minmod(E) =


inf(E) if E ⊂ R+,

sup(E) if E ⊂ R−,

0 otherwise.

2.2. The linear case. In the linear case A(u) = au, a > 0 for instance, we
define the exact node values and numerical fluxes, and the slopes, by the induction
formulae

un+1
i+1/2 = uni + sni (∆xi/2− a∆t),(2.5)

Ani+1/2 = auni + a
sni
2

(∆xi − a∆t),(2.6)

sn+1
i =

2

∆xi
minmod(un+1

i+1/2 − u
n+1
i , un+1

i − un+1
i−1/2).(2.7)

For this numerical flux, the finite volume method (1.2) satisfies

Theorem 2.1 (Linear equation). Under the CFL condition (2.3) and for initial
data u◦(x) ∈ V 1∩BV (R) satisfying the no sawtooth condition (1.8), the scheme
(1.2), (2.5)–(2.7) is second-order accurate and satisfies:

(i) the entropy conditions (1.4),(1.9) for all convex functions S,
(ii) min u◦ ≤ un(x) ≤ max u◦,
(iii) the no sawtooth condition (1.8), for all n ≥ 0,
(iv) the TVD property, TV (un+1) ≤ TV (un),

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



A MUSCL METHOD WITH ALL THE IN-CELL ENTROPIES 1443

(v) |v(tn, ·)− un(·)|L1(R) ≤ C TV (u◦h)h
√

tn
∆t + |v◦ − u◦h|L1(R).

The entropy flux associated with S is

ηni+1/2 =
1

∆t

∫ ∆t

0

aS (uni + sni (∆xi/2− at)) dt.

We remark that the no sawtooth condition is not necessary; we just need to
replace the minmod in (2.7) by a slightly different formula, see Lemma 4.1.

From the numerical point of view, we have tested this scheme and other variants
motivated in §3. We have obtained results whose precision lies between the Van
Leer and second-order ENO schemes.

2.3. Burgers’ equation without sonic point. The problem of computing an
exact node value uni+1/2 and the exact flux Ani+1/2 is more difficult for Burgers’

equation,

A(v) = v2/2.(2.8)

In this subsection, we only consider the nonsonic case, i.e., v(x), un(x) ≥ 0. Then,
we introduce the following scheme obtained by solving exactly the kinetic equation
which follows from the kinetic interpretation of the Engquist-Osher scheme [3],

un+1
i+1/2 =

uni + sni ∆xi/2

1 + ∆tsni
,(2.9)

Ani+1/2 =
(uni + sni ∆xi/2)2

2(1 + ∆tsni )
,(2.10)

sn+1
i =

2

∆xi
minmod (un+1

i+1/2 − u
n+1
i , un+1

i − un+1
i−1/2).(2.11)

For this scheme we obtain the same results as in the linear case:

Theorem 2.2 (Nonsonic Burgers’ equation). We assume the CFL and nonover-
taking conditions (2.3)–(2.4), and that the initial data u◦(x) ∈ V 1 ∩ BV (R) sat-
isfy u◦(x) ≥ 0 and the no sawtooth condition (1.8). Then, the scheme (1.2),
(2.9)–(2.11) is second-order accurate and satisfies un(x) ≥ 0 for all n ≥ 0 and the
conclusions (i)–(v) of Theorem 2.1. The entropy flux is given by

ηni+1/2 =
1

∆t

∫ ∆t

0

∫ ξi(t)

ξ=0

ξS′(ξ)dtdξ,

where

ξi(t) =
uni + sni ∆xi/2

1 + tsni
.

Remark 2.3. The above expression of the entropy flux can be written in a ‘charac-
teristic spirit’ rather than a ‘kinetic spirit’, for instance, following [24],

ηni+1/2 = η+(un+1
i+1/2)− un+1

i+1/2S(un+1
i+1/2)

+
1

∆t

∫ xi+1/2

xi+1/2−∆tun+1
i+1/2

S (uni + sni (x− xi)) dx,

η
′

+(ξ) = S′(ξ)ξ+.
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2.4. Sonic Burgers’ equation. To treat the general Burgers equation, we need
more complete formulae. They are obtained by refining the mesh by a factor of two
in order to avoid mixing some waves. They produce an algorithm which is more
complicated but still effective,

un+1
i+1/2 =

(uni + sni ∆xi/2)+

1 + ∆tsni
−

(uni+1 − sni+1∆xi+1/2)−

1 + ∆tsni+1

,(2.12)

Ani+1/2 =
(uni + sni ∆xi/2)2

+

2(1 + ∆tsni )
+

(uni+1 − sni+1∆xi+1/2)2
−

2(1 + ∆tsni+1)
.(2.13)

The slopes are computed by means of

un+1
i,c =

uni
1 + ∆tsni

, Ani =
(uni )2

2(1 + ∆tsni )
,(2.14)

un+1
i±1/4 = uni ± sni

∆xi
4
± 2

∆t

∆xi
(Ani −Ani±1/2),(2.15)

Dun+1
i±1/4 = ± 4

∆xi
minmod(un+1

i±1/4 − u
n+1
i,c , un+1

i±1/2 − u
n+1
i±1/4),(2.16)

sn+1
i =

2

∆xi
minmod(un+1

i − un+1
i−1/2, u

n+1
i+1/2 − u

n+1
i ,

un+1
i − un+1

i−1/4 +Dun+1
i−1/4

∆xi
4
,

un+1
i+1/4 − u

n+1
i +Dun+1

i+1/4

∆xi
4

).

(2.17)

Notice that in the nonsonic case, un ≥ 0, this scheme reduces to the nonsonic scheme
(2.9)–(2.11). Again, we obtain the entropy and convergence rate properties:

Theorem 2.4 (General Burgers equation). We assume the nonovertaking condi-
tion (2.4), the half CFL condition

a∞∆t <
1

2
min
i∈Z

∆xi,(2.18)

and that the initial data u◦(x) ∈ V 1 ∩BV (R) satisfy the no sawtooth condition
(1.8). Then, the scheme (1.2), (2.12)–(2.17) is second-order accurate and satisfies
the conclusions (i)–(v) of Theorem 2.1. The entropy flux is given by

ηni+1/2 =
1

∆t

∫ ∆t

0

(∫
ξ∈[0,ξ+

i (t)]

ξ+S′(ξ)dξ −
∫
ξ∈[0,ξ−i+1(t)]

ξ−S′(ξ)dξ

)
dt,

where

ξ±i (t) =
uni ± sni ∆xi/2

1 + tsni
.
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3. Entropic projections and kinetic formalism

The schemes presented in §2 are particular cases of a general theorem that we
present in this section. It relies mainly on a new tool that we introduce here: the
notion of entropic projections. This means finding a second-order approximation
of a function u−(x) by a piecewise linear function u(x), while decreasing all the
convex entropies ∫

Ci

S(u(x))dx ≤
∫
Ci

S(u−(x))dx.(3.1)

Before doing so, we explain how it is possible to reduce the numerical resolution of
scalar conservation laws (1.1) to two steps: exact transport and projection, using
the kinetic approach. This is a preliminary step to the proof of the theorems
presented in §2.

3.1. Kinetic interpretation of the Engquist-Osher scheme. The interpreta-
tion of the Engquist-Osher scheme, due to Brenier [3, 2], is based on the following
approximation (see also [23, 16]). Introduce a real parameter ξ and define

χ(u, ξ) =

 + 1 for 0 < ξ < u,
− 1 for u < ξ < 0,

0 otherwise.
(3.2)

Given un(x), we solve the free transport equation{
∂tf + a(ξ) ∂x f = 0, t ∈ [tn, tn+1), x, ξ ∈ R,
f(tn, x, ξ) = χ(un(x), ξ).

(3.3)

We obtain an infinitely accurate in time approximation of the solution to (1.1), just
setting

un+1,−(x) =

∫
R
f(t−n+1, x, ξ)dξ.(3.4)

Indeed, if un is smooth and ∆t is small enough, un+1,− is the solution to the scalar
conservation law (1.1) at time tn+1 corresponding to the initial data un at time tn.
This is the basis of the Transport Collapse (TC in short) method of [2]. We thus
define

T (t)u (x) =

∫
R
χ (u(x− ta(ξ)), ξ) dξ.(3.5)

Notice that in the linear case a(ξ) = a, we have that T (t)u (x) = u(x − at) is
the exact solution to the equation (1.1). The TC operator satisfies the following
properties:

Lemma 3.1 ([2]). We have
(i)
∫
|x−x◦|<R |T (t)u− T (t)v| ≤

∫
|x−x◦|<R+|a|∞t |u− v|,

(ii) if u ≤ v, then T (t)u ≤ T (t)v and infR u ≤ T (t)u ≤ supR u,
(iii) |T (t)u− T (t)v|L1(R) ≤ |u− v|L1(R),
(iv) TV (T (t)u) ≤ TV (u),
(v) |T (t1)u− T (t2)u|L1(R) ≤ |a|∞TV (u)|t1 − t2|,
(vi) for any convex function S(·),

S(T (t)u)− S(u) + ∂x

∫ t

0

∫
R
S′(ξ)a(ξ)χ (u(x− sa(ξ)), ξ) dξds ≤ 0.(3.6)
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These properties are straightforward consequences of the fact that∫
R
|χ(u, ξ)− χ(v, ξ)|dξ = |u− v|,(3.7)

and that χ(u(x − a(ξ)t), ξ) solves the linear transport equation (3.3). Also, for
convex functions S (see [3, 2, 23, 16]) we have

S(T (t)u) ≤ S(0) +

∫
R
S′(ξ)χ(u(x− a(ξ)t), ξ)dξ,(3.8)

because, for any function f(ξ) satisfying 0 ≤ sign(ξ) f(ξ) ≤ 1 we have that, for any
convex function S,

S(

∫
R
f(ξ)dξ) ≤ S(0) +

∫
R
S′(ξ)f(ξ) dξ.(3.9)

3.2. Entropic projections. Up to this point we have developed a good approxi-
mation of the solution of the scalar conservation law (1.1) after a time step. But,
if un is piecewise linear, the approximation un+1,− = T (∆t)un is not. Therefore, it
remains to explain how to construct a projection un+1 of un+1,− in V 1, the vector
space of piecewise linear functions, which realizes the entropy dissipation (3.1). A
general method is as follows.

Lemma 3.2. Let u ∈ L1(a, b), c =
a+ b

2
and

u =
1

b− a

∫ b

a

u(x)dx.(3.10)

Define the function ζ ∈ C(a, b) and the approximate derivative Du of u by

ζ(y) =
2

b− a

(
1

b− y

∫ b

y

u(x)dx− 1

y − a

∫ y

a

u(x)dx

)
, a < y < b,(3.11)

Du = minmoda<y<b ζ(y).(3.12)

Then, (i) for all convex functions S and θ ∈ [0, 1],∫ b

a

S(u+ θDu(x− c))dx ≤
∫ b

a

S(u(x))dx,(3.13)

(ii) if u is continuous at the points a and b, then ζ ∈ C([a, b]) and

ζ(a) =
2

b− a (u− u(a)) , ζ(b) =
2

b− a (u(b)− u) .

Proof. The continuity statements and (ii) are obvious, and we just prove (i). Denote

v(x) = u+Dv(x− c), Dv = θDu.

Since (3.13) holds as an equality when S is a linear function, it is enough to prove
it for the entropies S(u) := Sk(u) = (u− k)+. We have, by convexity,∫ b

a

(Sk(u)− Sk(v)) ≥
∫ b

a

(u− v) Iv>k := J,(3.14)
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and we are going to prove that J ≥ 0. The result is clear if Dv = 0, or more
generally, if v− k has a constant sign on (a, b). Thus, we can assume that Dv > 0,
for instance, and

J =

∫ b

a

(u− v) Ix>y, a < y = c+
k − u
Dv

< b.

Then,

J =

∫ b

y

(u− v)

=

∫ b

y

u − (b− y)u−Dv(y − a)(b− y)/2

=
y − a
b− a

∫ b

y

u− b− y
b− a

∫ y

a

u−Dv(y − a)(b− y)/2

= (y − a)(b− y)(ζ(y)−Dv)/2.

Since Du > 0, and from the definition of Du and Dv, we have ζ(y) ≥ Du ≥ Dv.
Hence J ≥ 0. The case Dv < 0 is similar.

Remark 3.3. (1) Our definition of Du is consistent with the derivative for C1 func-
tions. Indeed, if u is linear, then Du is just the slope of u. Then, by a convexity
argument, one can check that, for all y ∈ (a, b), there is a point ηy ∈ [a, b] such that

ζ(y) =
2

b− a

∫ b

a

(
x− a
y − aIx≤y +

b− x
b− y Iy<x)u′(x)dx = u′(ηy).(3.15)

Therefore, there is also an η ∈ [a, b] such that Du = u′(η).
(2) Another way to see the consistency of Du is as follows. If u is convex in [a, b]

(resp. concave), then ζ is nondecreasing (resp. nonincreasing) and thus

Du =
2

b− a minmod(u− u(a), u(b)− u).

This is a consequence of the following formula, which gives the derivative of ζ:

ζ′(y) =
2

(b− y)(y − a)

(
y − a

(b− a)(b− y)

∫ b

y

u+
b− y

(b− a)(y − a)

∫ y

a

u− u(y)

)
,

(3.16)

and of the following type of inequalities, in the convex case for instance,

u(
y + b

2
) = u(

1

b− y

∫ b

y

xdx) ≤ 1

b− y

∫ b

y

u(x)dx.

(3) Still another case where consistency appears clearly is u′ ∈ L1(a, b); then
Du = minmod{u′(y), a < y < b} satisfies indeed

Du = θDu for some 0 ≤ θ ≤ 1.(3.17)

Therefore, this evaluation Du of the derivative, although it is entropic, is not as
good as Du. Especially when u has discontinuities, it cannot be used because it is
too far from Du and accuracy is lost.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1448 F. BOUCHUT, CH. BOURDARIAS, AND B. PERTHAME

We can now go back to the numerical schemes for (1.1). Given a piecewise
linear function un(x), we have developed a second-order approximation of the scalar
conservation law un+1,− = T (∆t)un, using the transport collapse method. We can
define another operator and another piecewise linear function (we use the notations
of the introduction and §2.1),

Q1(∆t) = P 1 · T (∆t), un+1 = P 1un+1,− = Q1(∆t)un;(3.18)

the projection P 1 is just defined as above on each cell:

P 1u(x) = ui +Dui(x− xi) for x ∈ Ci,

ui =
1

∆xi

∫
Ci

u(x)dx, Dui = minmod{ζi(x), x ∈ Ci},(3.19)

and ζi is just defined as ζ in (3.11) in each cell Ci by means of Lemma 3.2. We can
give some properties of the operator P 1:

Proposition 3.4. The projection P 1 enjoys the following properties:
(i) ∀u ∈ V 1, P 1u = u,
(ii) inf(u) ≤ P 1u ≤ sup(u),
(iii) for any convex function S, we have, for all i ∈ Z,∫

Ci

S(P 1u) ≤
∫
Ci

S(u),

(iv) |P 1u|Lp(R) ≤ |u|Lp(R) for all 1 ≤ p ≤ ∞,

(v) if u is monotone nonincreasing (resp. nondecreasing), so is P 1u,
(vi) TV (P 1u) ≤ TV (u), |P 1u− u|L1(R) ≤ 3h

4 TV (u),

(vii) if u ∈ BV (R) is continuous at the points xi+1/2, then P 1u satisfies the
“no-sawtooth condition” (1.8).

Remark 3.5. (1) The approximation rate given in (vi) is just first-order. This is
because we only use the BV regularity of u, the only one available in practice. If
u ∈ C2, one can prove that |P 1u− u|∞ ≤ |u′′|∞h2/2.

(2) It is easy to check that, except for property (i), Proposition 3.4 holds if we
replace Dui by θiDui, 0 ≤ θi ≤ 1.

Proof of Proposition 3.4. We use the notation v = P 1u throughout this proof. (i)
is clear because, when u is linear on Ci, then Dui is just its slope. Next, we let
y > xi−1/2 tend to xi−1/2, and y < xi+1/2 tend to xi+1/2. We find in the definition
of ζi that

Dui = αi
2

∆xi
(ui − λi), Dui = βi

2

∆xi
(µi − ui),

for some 0 ≤ αi, βi ≤ 1, inf(u) ≤ λi, µi ≤ sup(u) (if right and left limits exist, in
the BV case for instance, then λi = u(x+

i−1/2), µi = u(x−i+1/2)). Hence,

v(x+
i−1/2) ∈ [ui, λi], v(x−i+1/2) ∈ [ui, µi],(3.20)

and (ii) is proved. (iii) is just the inequality (3.13). (iv) is obtained from (iii)
by choosing S(u) = |u|p. Next, if u is nondecreasing for instance, then we obtain
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Dui ≥ 0 and (3.20) shows that the jumps of v are nondecreasing. This proves (v).
The proof of (vi) is more delicate. We have

TV (v) =
∑
i

|v(x−i+1/2)− v(x+
i−1/2)|+

∑
i

|v(x+
i+1/2)− v(x−i+1/2)|,

and

|v(x+
i+1/2)− v(x−i+1/2)| ≤ |u(x+

i+1/2)− u(x−i+1/2)|+ |v(x+
i+1/2)− u(x+

i+1/2)|
+ |v(x−i+1/2)− u(x−i+1/2)|.

Hence,

TV (v) ≤
∑
i

|u(x+
i+1/2)− u(x−i+1/2)|

+
∑
i

(
|v(x−i+1/2)− v(x+

i−1/2)|+ |v(x+
i−1/2)− u(x+

i−1/2)|

+|v(x−i+1/2)− u(x−i+1/2)|
)
.

But, by (3.20),

|v(x−i+1/2)− v(x+
i−1/2)|+ |v(x+

i−1/2)− u(x+
i−1/2)|+ |v(x−i+1/2)− u(x−i+1/2)|

= |v(x−i+1/2)− ui|+ |ui − v(x+
i−1/2)|+ |v(x+

i−1/2)− u(x+
i−1/2)|

+ |v(x−i+1/2)− u(x−i+1/2)|
= |u(x−i+1/2)− ui|+ |ui − u(x+

i−1/2)|,

which yields

TV (v) ≤
∑
i

(
|u(x−i+1/2)− ui|+ |ui − u(x+

i−1/2)|+ |u(x+
i+1/2)− u(x−i+1/2)|

)
≤ TV (u).

This is the first inequality of (vi). To prove the second, we use the first-order
projector P 0 (on piecewise constant functions):

|u− v|1 ≤ |u− P 0u|L1(R) + |P 0u− v|L1(R) ≤
3

4
hTV (u),

because |P 0u− u|L1(R) ≤ hTV (u)/2, and

|P 0u− v|L1(R) =
∑
i

∫
Ci

|Dui||x− xi|dx =
∑
i

∆xi
2

4
|Dui|

≤
∑
i

∆xi
4
|u(x−i+1/2)− u(x+

i−1/2)|

≤ TV (u) h/4,

which gives the second inequality of (vi). Finally, (vii) is also a straightforward
consequence of (3.20).
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From these properties of P 1 follow the properties of the operator Q1, i.e., of the
scheme un+1 = Q1(∆t)un. Although it might look very abstract, this is our main
result, because we will show in the next section that Q1 can be made explicit in
particular cases.

Theorem 3.6. The numerical scheme Q1 satisfies the following properties
(i) inf(u) ≤ Q1(∆t)u ≤ sup(u),
(ii) |Q1(∆t)u|Lp(R) ≤ |u|Lp(R) for all 1 ≤ p ≤ ∞,

(iii) if u is monotone nonincreasing (resp. nondecreasing), so is Q1(∆t)u,
(iv) TV (Q1(∆t)u) ≤ TV (u) and |Q1(∆t)u− u|L1(R) ≤ TV (u)(a∞∆t + 3h/4),
(v) for any convex function S, we have, for all i,

1

∆xi

∫
Ci

S
(
Q1(∆t)u

)
− 1

∆xi

∫
Ci

S(u) +
∆t

∆xi
(ηi+1/2 − ηi−1/2) ≤ 0,(3.21)

ηi+1/2 =
1

∆t

∫ ∆t

0

∫
R
S′(ξ)a(ξ)χ

(
u(xi+1/2 − sa(ξ)), ξ

)
dξds,(3.22)

(vi) let u◦ ∈ V 1 ∩ BV (R), denote T = n∆t, and let v be the exact entropic
solution to (1.1) with initial data u◦. Then, we have for some absolute constants
C,

|Q1(∆t)nu◦ − v(T, ·)|L1(R) ≤ C TV (u◦)
(
a∞
√
T∆t+ h

√
T/∆t

)
,(3.23)

and in the linear case a(ξ) = a,

|Q1(∆t)nu◦ − v(T, ·)|1 ≤ C TV (u◦) h
√
T/∆t.(3.24)

Remark 3.7. (1) These results hold without any CFL condition, and for any flux
A(v) in the equation (1.1). They can be seen as an abstract second-order extension
of the Transport Collapse method. Under the CFL condition and for ∆t ≥ αh for
some α > 0, we obtain the classical rate of convergence h1/2.

(2) Since P 1 is a conservative operator, we also have a discretized equation on
the cell averages,

1

∆xi

∫
Ci

Q1(∆t)u− 1

∆xi

∫
Ci

u +
∆t

∆xi
(Ai+1/2 −Ai−1/2) = 0,

Ai+1/2 =
1

∆t

∫ ∆t

0

∫
R
a(ξ)χ(u(xi+1/2 − sa(ξ)), ξ)dsdξ.(3.25)

Proof of Theorem 3.6. All these results are straightforward combinations of the
corresponding results of Lemma 3.1 and Proposition 3.4. Only the global rate of
convergence (vi) is new, and its proof will be given in §5.

4. Proof of the main results

Under some conditions the operator P 1 can be completely identified. Then, our
results on the operator Q1 give the convergence and the entropy inequalities for
numerical schemes. This is the case of the three results announced in §2. We detail
the explicit computations for the different cases below.

Since all these results are special cases of Theorem 3.6, the fluxes Ani+1/2 and

the entropy fluxes ηni+1/2, in the theorems of §2, are those given in (3.25) and

(3.22), which are explicit for u a piecewise linear function, for a CFL less than
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one and under the piecewise nonovertaking condition (2.4). They are just those of
the (TC) operator. Also second-order accuracy is always maintained because Q1 is
second-order in space and time. It remains to explain how to compute P 1.

4.1. The linear case. This case relies on a preliminary lemma.

Lemma 4.1. With the notations of Lemma 3.2, let d ∈ (a, b) and assume that u
is linear in each subinterval (a, d) and (d, b), with a jump Σ at the point d. Then

Du =
2

b− a minmod(u− u(a), u(b)− u, b− a
2

ζ(d)).(4.1)

If u satisfies the no sawtooth condition

u′l Σ ≥ 0 or u′r Σ ≥ 0,(4.2)

where u′l, u
′
r are the left and right derivatives of u, then

Du =
2

b− a minmod(u− u(a), u(b)− u).(4.3)

Proof. Following Lemma 3.2 (ii), we have ζ ∈ C([a, b]), and one easily computes

ζ(y) =

{
2
b−y (u− u(a+y

2 )) if a ≤ y ≤ d,
2

y−a(u( b+y2 )− u) if d ≤ y ≤ b.
(4.4)

But ζ is monotone on both subintervals (a, d), (d, b), and thus (4.1) follows. The
no sawtooth case will be proved in the next subsection (see Lemma 4.2).

Now, we can complete the proof of the linear case because, under the CFL
condition, the projection P 1 can be completely identified. Indeed, after a time
step, a piecewise linear no sawtooth function is translated into a new function
which satisfies the assumptions of Lemma 4.1. Thus, (4.3) holds, just giving in

each cell the slope sn+1
i = Dun+1,−

i used in the scheme of Theorem 2.1. Hence,
Theorem 2.1 is nothing but Theorem 3.6 in this particular case. Notice that the
no sawtooth condition propagates thanks to Proposition 3.4 (vii), which holds true
here.

4.2. Nonsonic Burgers’ equation. Again, we will prove that the formula given
in §2.3 is an explicit expression of the operator Q1, in the nonsonic Burgers case
and under the CFL and nonovertaking conditions (2.3), (2.4). Indeed, in that case
we can compute the exact solution of the Transport Collapse operator, with un ≥ 0
a piecewise linear function. It is a continuous function given by the formula

[T (∆t)un](x) =
uni + sni (x− xi)

1 + ∆tsni
− (x− di,2)−

∆t(1 + ∆tsni )
+

(x− di,1)−
∆t(1 + ∆tsni−1)

,

di,1 = xi−1/2 + ∆t(uni−1 + sni−1∆xi−1/2),

di,2 = xi−1/2 + ∆t(uni − sni ∆xi/2).
(4.5)

In each cell Ci, this function is composed of, at most, three linear pieces. In order
to compute its projection, we need to identify Du in the following case:

Lemma 4.2. With the notations of Lemma 3.2, let a < d1 < d2 < b. Assume that
u is continuous on [a, b] and linear in each subinterval (a, d1), (d1, d2) and (d2, b),
with respective slopes u′l, u

′
m, u

′
r satisfying the condition

minmod(u′l, u
′
m, u

′
r) = minmod(u′l, u

′
r).(4.6)
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Then

Du =
2

b− a minmod(u− u(a), u(b)− u).(4.7)

Remark 4.3. (1) Notice that, by Remark 3.3 (3), we have for some 0 ≤ θ ≤ 1,

minmod(u′l, u
′
m, u

′
r) = θDu.

Therefore, the expression (4.7) gives a better slope than (4.6), i.e., the Du of (3.17).
(2) In the limit case d1 = d2, u

′
m = ±∞, we recover the case of Lemma 4.1 and

the condition (4.6) is nothing but the no sawtooth condition in Lemma 4.1. Hence,
we indeed recover the conclusion (4.3).

Proof of Lemma 4.2. Since u is continuous, ζ is C1, and one computes

ζ(y) =


2
b−y (u− u(a+y

2 )) if a ≤ y ≤ d1,
2

y−a (u( b+y2 )− u) if d2 ≤ y ≤ b,
α
y−a + β

b−y + γ if d1 ≤ y ≤ d2,

(4.8)

for some real numbers α, β, γ, which are uniquely defined so that ζ ∈ C1([a, b]).
The function ζ is homographic, hence monotone, on [a, d1] ∪ [d2, b]. We have to
prove that Du = m := minmod(ζ(a), ζ(b)). Three cases occur: if m = 0, then
clearly Du = 0, and we are done. Next, we treat the case m > 0, for instance (the
case m < 0 is similar and we do not repeat the proof). We are going to prove that

ζ′(a) ≥ 0 or ζ′(b) ≤ 0.(4.9)

Indeed, one has

ζ(a) =
2

b− a (u− u(a)), ζ′(a) =
1

b− a (ζ(a) − u′(a)),

ζ(b) =
2

b− a(u(b)− u), ζ′(b) =
1

b− a (u′(b)− ζ(b)).

If we had ζ′(a) < 0 and ζ′(b) > 0, since ζ(a) > 0, ζ(b) > 0 (m > 0), we would have
(remember that c = (a+ b)/2)

u(a) < u < u(b), u(b) + (c− b)u′(b)<u<u(a) + (c− a)u′(a).(4.10)

Hence, u′(a) > 0, u′(b) > 0, i.e., u′l > 0, u′r > 0. By the condition (4.6) this implies
u′m ≥ min(u′l, u

′
r). Now, if u′m ∈ [u′l, u

′
r], then u is either convex or concave, and we

are done thanks to Remark 3.3 (2). On the other hand, if u′m > max(u′l, u
′
r), then

it is geometrically obvious that this yields

u(a) + (y − a)u′l ≤ u(y) ≤ u(b) + (y − b)u′r, d1 ≤ y ≤ d2.

From (4.10), we deduce that c does not belong to [d1, d2]. Using (4.10) again, we
obtain, in the case c > d2 for example, that u′l > u′r and thus, u(y) ≤ u(b)+(y−b)u′r.
Integrating this over y ∈ [a, b] gives u ≤ u(b) + (c− b)u′r, which contradicts (4.10).
The case c < d1 is similar and we always obtain that (4.9) holds.

Now that (4.9) is proved (still in the case m > 0), we deduce the result Du = m.
Indeed, notice that ζ is monotone on [a, d1], [d2, b]; and on [d1, d2], ζ is either
nondecreasing, nonincreasing, convex or concave. Since ζ is C1, the only nontrivial
case is when ζ is first nonincreasing, then convex, then nondecreasing, which of
course contradicts (4.9), and Lemma 4.2 is proved.
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Now, we may complete the proof of Theorem 2.2. On each cell, T (∆t)un satisfies
the conditions of Lemma 4.2. Indeed, the no sawtooth assumption on un gives
exactly (4.6), as is readily proved computing the three derivatives of T (∆t)un.
And the point values referred to as u(a), u(b) are exactly the values un+1

i±1/2 in (2.9),

so that the slope of [Q1(∆t)un] in Ci is exactly sn+1
i in (2.11). Therefore, Theorem

2.2 is again nothing but Theorem 3.6 in this case and the no sawtooth condition
propagates thanks to Proposition 3.4(vii).

4.3. Sonic Burgers’ equation. Now, we treat the general case of Burgers’ equa-
tion without any sign assumption on the initial data. Then, a simple identification
of Q1 is not possible because the exact solution of the TC operator is more com-
plicated. Under the conditions (2.3), (2.4) it is still continuous but composed, at
most, of five linear pieces,

[T (∆t)un](x) =
uni + sni (x− xi)

1 + ∆tsni
− (x− di,2)−

∆t(1 + ∆tsni )
+

(x− di,1)−
∆t(1 + ∆tsni−1)

+
(x− di+1,1)+

∆t(1 + ∆tsni )
− (x− di+1,2)+

∆t(1 + ∆tsni+1)
.(4.11)

Here, di,1, di,2 are still given by (4.5). In principle, it is possible to test where the
minmod is attained in the definition of Du. But the resulting effective algorithm
is not very simple. Instead, it is simpler to introduce a new projection P 1∗, and a
new scheme Q1∗(∆t) = P 1∗ · T (∆t), with

P 1∗ = P 1 · P 1
h/2,(4.12)

where P 1
h/2 denotes the second-order projection associated with the grid whose cells

are half of the original ones. Of course, the properties of Theorem 3.6 are still valid
for P 1∗, because they are deduced from properties which hold for T (∆t), P 1. But
P 1
h/2 introduces some discontinuities at the points xi+1/2, therefore item (vii) in

Proposition 3.4 does not apply and thus, un+1 = Q1∗(∆t)un does not satisfy the
no sawtooth condition.

In order to compute P 1∗ in the above situation, we first prove a preliminary
result.

Lemma 4.4. Let u ∈ L1(a, b), and c = (a+ b)/2. Define

u =
1

b− a

∫ b

a

u, ul =
1

c− a

∫ c

a

u, ur =
1

b− c

∫ b

c

u,(4.13)

and let Dul, Dur be the approximate derivatives of u given by (3.12), corresponding
to the intervals (a, c), (c, b), respectively. Set

Du∗ =
2

b− a minmod(u− ul +
b− a

4
Dul, ur +

b− a
4

Dur − u, ur − ul).(4.14)

Then, for any convex function S and any 0 ≤ θ ≤ 1, we have∫ b

a

S(u+ θDu∗(x− c))dx ≤
∫ b

a

S(u(x))dx.(4.15)

Moreover, if u is continuous at c, then the last argument ur − ul can be omitted in
(4.14) and it does not change the value of Du∗.
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Again, it is easy to see that Du∗ is consistent with the value of the derivatives,
because for C1 functions u, we have Du∗ = u′(η) for some η ∈ [a, b], and thus
u′ = Du∗ for linear functions. Also, both Du and Du∗ belong to [0, 2

b−a (ur − ul)].

Proof of Lemma 4.4. Define the function

v(x) =

{
ul +Dul(x− a+c

2 ) if a < x < c,

ur +Dur(x− c+b
2 ) if c < x < b.

We have v = u, vl = ul, vr = ur, and by Lemma 3.2, for any convex function S,∫ c

a

S(v) ≤
∫ c

a

S(u),

∫ b

c

S(v) ≤
∫ b

c

S(u).

Hence, using Lemma 3.2 again, for any 0 ≤ θ ≤ 1 we find∫ b

a

S(v + θDv(x− c))dx ≤
∫ b

a

S(v) ≤
∫ b

a

S(u).

Now, we may compute the approximate derivative of v using Lemma 4.1:

Dv =
2

b− a minmod(v − v(a), v(b)− v, vr − vl)

=
2

b− a minmod(u− ul +
b− a

4
Dul, ur +

b− a
4

Dur − u, ur − ul).

Hence, Dv = Du∗, and we obtain (4.15). Finally, if u is continuous at c, we have

v(c− 0) ∈ [ul, u(c)], v(c+ 0) ∈ [ur, u(c)],

and the no sawtooth condition (4.2) is met for v. Then, in view of Lemma 4.1, the
last argument in the above minmod can be omitted.

In the cases when u satisfies either the conditions of Lemma 4.2 or 4.1, with
the nosawtooth condition (4.2) fulfilled, it is possible to prove that Du = θDu∗ for
some 0 ≤ θ ≤ 1. This means that the slope reconstruction using Du is not optimal
to realize the minimal entropy dissipation.

Notice that, as is evident from the above proof, the derivative Du∗ yields the
operator P 1∗ in (4.12). Now, we can complete the proof of Theorem 2.4. We just
apply the above lemma to compute D∗un+1

i on each cell. The formula (2.15) gives
the averages in the half-meshes of T (∆t)un, un+1

i,c is its exact value at xi, and in

(2.16) we deduce the right and left derivatives (Dur, Dul in the above lemma) by
applying Lemma 4.2, since the nosawtooth condition on un ensures (4.6) for un+1,−.
In the slope reconstruction (2.17) we have just added the two first arguments in
the minmod to ensure the preservation of the nosawtooth condition (1.8). This is
just a variant of Q1, which does not affect its properties stated in Theorem 3.6.

5. Convergence rate

In this section, we prove the convergence rate estimate, which has been an-
nounced in Theorem 3.6 (vi). The difficulty we have to face is that the averaged
entropy inequality (1.4) does not seem strong enough to obtain it. We need to go
further and derive a differential form for this entropy inequality (§5.1). Then, the
convergence rate follows from a general result that we present in §5.2. In §5.3, we
conclude the proof of the convergence rate.

Throughout this section, we use the notations of the introduction, §2.1 and §3.
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5.1. Improved entropy inequality. In order to study Q1, we define the functions
f(t, x, ξ) := fh(t, x, ξ), u(t, x) := uh(t, x) by using the free transport equation
(3.3), with discontinuities at times tn, from f(t−n , x, ξ) to χ(un,−(x), ξ) and then to
χ(un(x), ξ). We set

u(t, x) =

∫
R
f(t, x, ξ)dξ.(5.1)

Of course, this means that u also has a discontinuity at times tn, but not its cell
averages. At these times, the jump from un,− to un is defined by un = P 1un,− =
Q1un−1.

We can state a global inequality on the macroscopic entropies.

Lemma 5.1. For convex and Lipschitz continuous functions S, the scheme Q1

satisfies

∂tS(u) + ∂xη(u)≤∂tG(t, x) + ∂x[H0(t, x)+
∞∑
n=1

δ(t− tn)Hn(x)],(5.2)

where the error terms G, Hn are estimated for some measures αG, αHn by

|G| ≤ |S′|∞αG, |Hn| ≤ |S′|∞αHn ,

|αG(t, ·)|L1(R) ≤ 2 a∞TV (u◦)∆t,(5.3)

|αH0(t, ·)|L1(R) ≤ 2 (a∞)2TV (u◦)∆t,(5.4)

|αHn |L1(R) ≤
3

4
h2TV (u◦), n ≥ 1.(5.5)

Remark 5.2. As we will see, the projection P 1 only enters in the estimate of the
term Hn. Moreover, it only uses two properties of P 1: in-cell entropy dissipation
and error estimate from Proposition 3.4 (vi). It is very clear that they are also
true for P 1∗ and the variant used in the nonsonic case. Therefore, our proof holds
also in the case of Theorem 2.4. As we will see, these properties are also true for
the projection on piecewise constant functions, and thus we recover also, in a very
particular case, the rate of convergence for the Engquist-Osher scheme.

Proof of Lemma 5.1. Taking into account the discontinuities on f , recalled above,
we may write

∂tf + a(ξ)∂xf =
∞∑
n=1

δ(t− tn)

((
χ(un,−(x), ξ) − f(t−n , x, ξ)

)
+
(
χ(un(x), ξ)− χ(un,−(x), ξ)

))
.

(5.6)

We mutiply this equation by S′(ξ) and integrate it in ξ. This yields

∂tS(u) + ∂xη(u) ≤ ∂tG(t, x) + ∂xH0(t, x) +
∞∑
n=1

δ(t− tn)Kn(x),(5.7)

where the error terms are defined as follows:

G(t, x) =

∫
R
S′(ξ) (χ(u(t, x), ξ)− f(t, x, ξ)) dξ,(5.8)
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H0(t, x) =

∫
R
S′(ξ)a(ξ) (χ(u(t, x), ξ)− f(t, x, ξ)) dξ,(5.9)

Kn(x) = S(un(x)) − S(un,−(x)).(5.10)

Indeed, the first jump term in (5.6) gives a nonpositive contribution, which is the
only reason for the ‘≤’ in (5.7), thanks to Brenier’s kinetic entropy dissipation
inequality (3.9). Next, we estimate separately these three error terms on the time
interval [tn, tn+1), using (3.7):

|G(t, x)| ≤ |S′|∞
∫
R

(|χ(u(t, x), ξ) − χ(un(x), ξ)| + |f(t, x, ξ)− χ(un(x), ξ)|) dξ

≤ |S′|∞
[
|u(t, x)− un(x)| +

∫
R
|f(t, x, ξ)− f(tn, x, ξ)|dξ

]
.

Taking αG as the above bracket, we obtain, thanks to Lemma 3.1 (v) and to the
similar direct estimate on f ,

|αG(t, ·)|L1(R) ≤ 2 a∞TV (u◦)∆t.

Next, we can treat H0 in exactly the same way and obtain (5.4). Finally, for any
nonnegative test function Φ ∈ C∞c (R),∫

R
Φ(x)Kn(x)dx =

∑
i∈Z

∫ xi+1/2

x=xi−1/2

Kn(x)

(
Φ(xi−1/2) +

∫ x

xi−1/2

Φ′(y)dy

)
dx

≤
∑
i∈Z

∫ xi+1/2

y=xi−1/2

Φ′(y)

∫ xi+1/2

y

Kn(x)dx dy

= −
∫ ∞
−∞

Φ′(y)Hn(y)dy,

where, for xi−1/2 ≤ y < xi+1/2,

Hn(y) = −
∫ xi+1/2

y

Kn(x)dx,

|Hn(y)| ≤ |S′|∞
∫ xi+1/2

y

|un(x) − un,−(x)|dx.

Above, we have only used that, on each cell Ci, the operator P 1 dissipates entropy
thanks to Proposition 3.4 (iii) (and Φ(xi−1/2) ≥ 0). We have now obtained all the
terms of the equation (5.2), and it remains to estimate

αHn(y) :=

∫ xi+1/2

y

|un(x) − un,−(x)|dx for xi−1/2 ≤ y < xi+1/2,

∫
R
αHn(y)dy ≤ h

∫
R
|un(x) − un,−(x)|dx

≤ 3

4
h2TV (u◦).

(5.11)

The last inequality is just the error estimate on the projection P 1, Proposition 3.4
(vi). This gives the last result (5.5), and Lemma 5.1 is proved.
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5.2. A general convergence rate estimate. We now consider an approximate
solution u of the scalar conservation law (1.1), in the sense that it satisfies the
approximate entropy inequalities (5.2), and we deduce an error estimate which is
nearly that on Q1.

More generally, suppose we are given v ∈ C(R+;L1
loc(R)), the exact entropy solu-

tion to (1.1) with initial data v(t = 0, ·) = u◦ ∈ BV (R), and let u∈L∞(R+;L1
loc(R))

satisfy, in the distribution sense and for the same initial data, the entropy inequal-
ities {

∂tS(u) + ∂xη(u) ≤ ∂tG(t, x) + ∂xH(t, x),
S(u)(t = 0, ·) = S(u◦), G(t = 0, x) = 0,

(5.12)

for Lipschitz continuous convex functions S. We assume that the distributions G
and H satisfy

|G| ≤ |S′|∞αG(t, x), |H| ≤ |S′|∞αH(t, x),

for some locally bounded measures αG, αH .

Theorem 5.3. With the above notations, and for any δ,∆ > 0, T ≥ δ, we have for
some absolute constant C

1

δ

∫ δ

0

∫
R
|u(T + s, x)− v(T + s, x)|dxds

≤ C TV (u◦)(∆ + a∞δ) + C

∫ T+2δ

0

∫
R

(
αG
δ

+
αH
∆

)dxds.

(5.13)

Proof. We follow the classical approach of Kružkov [14] and just insist on the new
point: the treatment of G and H. We choose a test function of the form

Φ(s, t, x, y) = ϕ1(s+ t)ϕ2(x + y)ζ1(s− t)ζ2(x− y),

where ϕ1, ϕ2, ζ1, ζ2 are smooth nonnegative functions with compact support. We
assume, moreover, that

ϕ1 ≤ 1, ϕ1(t) = 1 for 0 ≤ t ≤ 2T, ϕ1(t) = 0 for t ≥ 2T + 4δ, ϕ2 ≤ 1,

and ζ1(σ) = 1
δ ζ1

(σδ ), ζ2(z) = 1
∆ζ2

( z∆), with

ζ
1
≤ 1, ζ

1
(σ) = 0 for σ ≥ 0 or σ ≤ −6, ζ

1
(σ) = 1 for − 4 ≤ σ ≤ −2,

ζ
2
≤ 1, ζ

2
(z) = 0 for |z| ≤ 1, ζ

2
(z) = 1 for |z| ≥ 2,

∫
ζ

2
(z)dz = 3.

We classically introduce the entropies S(s, t, x, y) = |u(s, x) − v(t, y)| and the en-
tropy fluxes η(s, t, x, y) = sign(u(s, x)− v(t, y)) (A(u(s, x))−A(v(t, y))). Then, the
equation (5.12) in the distributional sense gives

−
∫ ∞
s=0

∫
x∈R

[S(s, t,x, y)Φs + η(s, t, x, y)Φx]dsdx

≤
∫
x∈R
|u◦(x) − v(t, y)|Φ(0, t, x, y)dx

−
∫ ∞
s=0

∫
x∈R

[G(s, x)Φs +H(s, x)Φx]dsdx.
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Also, since our assumptions imply that Φ = 0 for t ≤ 0, we have

−
∫ ∞
t=0

∫
y∈R

[S(s, t, x, y)Φt + η(s, t, x, y)Φy]dtdy = 0.

We integrate both equalities in the extra variables t, y and s, x, and we add up the
results. This gives

−2

∫ ∞
s,t=0

∫
x,y∈R

[S(s, t, x, y)ϕ
′

1(t+ s)ϕ2(x+ y)ζ1(s− t)ζ2(x− y)

+ η(s, t, x, y)ϕ1(t+ s)ϕ
′

2(x + y)ζ1(s− t)ζ2(x− y)] dxdydsdt

=

∫ ∞
t=0

∫
x,y∈R

|u◦(x)− v(t, y)|ϕ1(t)ϕ2(x+ y)ζ1(−t)ζ2(x− y)dxdydt+R1

≤ 1

δ∆

∫ 6δ

t=0

∫
|x−y|≤∆

|u◦(x)− v(t, y)|dtdydx +R1,(5.14)

R1 = −
∫ ∞
s,t=0

∫
x,y∈R

[G(s, x)Φs +H(s, x)Φx]dsdtdxdy.(5.15)

Before estimating R1, let us notice that it is possible to choose a sequence ϕ2 which
converges to 1 with a derivative which converges uniformly to 0. And we may also
choose a sequence ϕ1 which converges to the indicator function of [0, 2T + 4δ], and

ϕ
′

1 converges to a Dirac mass of weight −1 at the point τ = 2T + 4δ. We may pass
to the limit in the above formula, which gives exactly the first line of (5.13) after
some very standard calculations. It remains to estimate R1:

R1 ≤
∫ ∞
s,t=0

∫
x,y∈R

[αG(s, x)(|ϕ′1(t+ s)|ζ1(s− t) + ϕ1|ζ
′

1|)ϕ2(x+ y)ζ2(x− y)

+ αH(s, x)(|ϕ′2(x + y)ζ2(x− y) + ϕ2|ζ
′

2|)ϕ1(t+ s)ζ2(s− t)] dxdydsdt.

Here, using the limits on ϕ1, ϕ2, we obtain for some constant C

R1 ≤ 6

∫ ∫
x∈R

αG(T + 2δ +
σ

2
, x) ζ1(σ)dσdx

+
C

δ

∫ T+2δ

0

∫
x∈R

αG(s, x) dxds+
C

∆

∫ T+2δ

0

∫
x∈R

αH(s, x) dxds.

This completes the proof of Theorem 5.3.

5.3. Proof of the convergence rate. We are now ready to conclude the proof
of the convergence rate in Theorem 3.6 (vi). We can bound the right-hand side of
(5.13), using Lemma 5.1 and the fact that v is TVD. We find (using T in place of
T + δ and choosing T ≥ δ) that the left-hand side of (5.13) is bounded by

C TV (u◦)

[
(∆ + a∞δ) + Ta∞

∆t

δ
+ T (a∞)2 ∆t

∆
+

T

∆t

h2

∆

]
.(5.16)

The optimal choice of the free parameters δ, ∆ reduces (5.16) to

C TV (u◦)

(
a∞(T∆t)1/2 + h(

T

∆t
)1/2

)
,(5.17)
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which gives exactly the result (3.23). It remains to notice that this bound for
the left-hand side of (5.13) causes a difficulty because u does not belong to
C(R+;L1

loc(R)). But the same terms are involved, writing∫
R
|u(T, x)− v(T, x)|dx − 1

δ

∫ δ

0

∫
R
|u(T + s, x)− v(T + s, x)|dxds

≤ 1

δ

∫ δ

0

∫
R
|v(T + s, x)− v(T, x)|dxds

+
1

δ

∫ δ

0

∫
R
|u(T + s, x)− u(T, x)|dxds

≤ a∞TV (u◦)δ +
1

δ

∫ δ

s=0

∫ s

t=0

∫
R
|ut(T + t, x)|dx dt ds

≤ 2a∞TV (u◦)δ +

p+n∗∑
n=p

|un − un,−|L1(R)

≤ 2a∞TV (u◦)δ + C TV (u◦)h
δ

∆t
,

where n∗∆t = δ and p∆t = T . The last inequality is obtained by using again the
estimate of Proposition 3.4 (vi). This proves the estimate (3.23), and the proof of
Theorem 3.6 is complete.

Remark 5.4. In the linear case, we can only improve the transport step which is
exact. This means that G = H0 = 0 in Lemma 5.1, in which case the estimate
(5.16) becomes∫

R
|u(T, x)− v(T, x)| ≤ C TV (u◦) [(∆ + a∞δ) +

T

∆t

h2

∆
+ h

δ

∆t
];

the last term comes from (5.3). We let δ tend to zero and, optimizing the choice of
∆, we obtain (3.24).

6. Appendix. Convergence rate for the Engquist-Osher scheme

This appendix is devoted to another application of the error estimates developed
in §5. In a very simple case, when we consider the projection P 0 on piecewise
constant functions instead of P 1, it generalizes the known rates of convergence for
the first-order Engquist-Osher scheme. The general scheme can be written, with
our previous notations,

Q0(∆t) = P 0 · T (∆t),

which is the Engquist-Osher scheme under the CFL condition (2.3). Our theory
allows us to give convergence rates without any restriction on the time step. We do
not need any inverse CFL condition ∆t ≥ αh. Nor do we need the CFL condition;
we must use a multipoint extension to identify the numerical fluxes in formula
(3.25).

Theorem 6.1. The first-order scheme Q0 satisfies the error estimate

|v(tn, ·)− un(·)|L1(R) ≤ C TV (u◦h)
√
tn(
√
a∞h+ a∞

√
∆t) + |v◦ − u◦h|L1(R).

This holds in particular for the Engquist-Osher scheme under the CFL condition
(2.3).
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Proof. We use the proof given in §5, but we change the estimate (5.11) to∫
R
αHn(y)dy ≤ C TV (u◦)a∞h ∆t.

Indeed, instead of the estimate (vi) in Proposition 3.4, we can use

|un+1 − un+1,−|L1(R) ≤ TV (u◦)a∞∆t,

which is obtained as follows, see Lemma 3.1 (v):

|un+1 − un+1,−|L1(R) ≤ |un+1 − un|L1(R) + |un+1,− − un|L1(R)

≤ |un+1 − un|L1(R) + C TV (u◦)a∞∆t.

It remains to compute, using the fact that P 0 diminishes in-cell entropies,∫
Ci

|un+1(x)− un(x)|dx =

∫
Ci

|P 0(un+1,−)(x) − uni |dx

≤
∫
Ci

|un+1,−(x)− uni |dx,

hence

|un+1 − un|L1(R) ≤ C TV (u◦)a∞∆t.

Remark 6.2. Such a result also holds for any variant Q1 of Q1 which is time
Lipschitz continuous, i.e.,

|Q1(∆t)un − un|L1(R) ≤ C TV (un)a∞∆t.
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les inégalités d’entropie numériques, C.R. Acad. Sc. Paris Série I 317 (1993), 619-624. MR
94e:65119

2. Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Num. Anal.
21 (1984), 1013-1037. MR 86b:65099

3. Y. Brenier, Résolution d’équations d’évolution quasilinéaires en dimension N d’espace à l’aide
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